Optimal boundary control for hyperdiffusion equation
نویسندگان
چکیده
In this paper, we consider the solution of optimal control problem for hyperdiffusion equation involving boundary function of continuous time variable in its cost function. A specific direct approach based on infinite series of Fourier expansion in space and temporal integration by parts for analytical solution is proposed to solve optimal boundary control for hyperdiffusion equation. The time domain is divided into number of finite subdomains and optimal function is estimated at each subdomain to obtain desired state with minimum energy. Proposed method has high flexibility so that decision makers are able to trace optimal control in a prescribed subinterval. The implementation of the theory is presented and the effectiveness of the boundary control is investigated by some numerical examples.
منابع مشابه
Numerical Solution of Optimal Heating of Temperature Field in Uncertain Environment Modelled by the use of Boundary Control
In the present paper, optimal heating of temperature field which is modelled as a boundary optimal control problem, is investigated in the uncertain environments and then it is solved numerically. In physical modelling, a partial differential equation with stochastic input and stochastic parameter are applied as the constraint of the optimal control problem. Controls are implemented ...
متن کاملA New Modification of Legendre-Gauss Collocation Method for Solving a Class of Fractional Optimal Control Problems
In this paper, the optimal conditions for fractional optimal control problems (FOCPs) were derived in which the fractional differential operators defined in terms of Caputo sense and reduces this problem to a system of fractional differential equations (FDEs) that is called twopoint boundary value (TPBV) problem. An approximate solution of this problem is constructed by using the Legendre-Gauss...
متن کاملNumerical solution of optimal control problems by using a new second kind Chebyshev wavelet
The main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. Here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. In this case, state variables will be approximated by a new hybrid technique based on new second kind Ch...
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملNecessary Optimality Conditions for Some Control Problems of Elliptic Equations with Venttsel Boundary Conditions
In this paper we derive a necessary optimality condition for a local optimal solution of some control problems. These optimal control problems are governed by a semi-linear Vettsel boundary value problem of a linear elliptic equation. The control is applied to the state equation via the boundary and a functional of the control together with the solution of the state equation under such a contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kybernetika
دوره 46 شماره
صفحات -
تاریخ انتشار 2010